امروز پنجشنبه 01 آذر 1403 http://ontim.cloob24.com
0
آیا قصد دارید تحقیقی را انجام دهید؟ و یا اینکه در حال مطالعه یک تحقیق می باشید؟

چگونه می توانید از صحت روش تجزیه و تحلیل داده ها اطمینان حاصل فرمائید؟ 

شاخه های مختلف علوم برای تجزیه و تحلیل داده ها از روش های مختلفی مانند روش های ذیل استفاده می نمایند:

الف) روش تحلیل محتوا

ب) روش تحلیل آماری

ج) روش تحلیل ریاضی

د) روش اقتصاد سنجی

ه) روش ارزشیابی اقتصادی

و). 

تمرکز این نوشتار بر روش های تجزیه و تحلیل سیستمهای اقتصادی اجتماعی و بویژه روش های تحلیل آماری می باشد. 

آمار علم طبقه بندی اطلاعات، علم تصمیم گیری های علمی و منطقی، علم برنامه ریزی های دقیق و علم توصیف و بیان آن چیزی است که از مشاهدات می توان فهمید. 

هدف ما آموزش درس آمار نیست زیرا اینگونه مطالب تخصصی را می توان در مراجع مختلف یافت، هدف اصلی ما ارائه یک روش دستیابی سریع به بهترین روش آماری می باشد. 

یکی از مشکلات عمومی در تحقبقات میدانی انتخاب روش تحلیل آماری مناسب و یا به عبارتی انتخاب آزمون آماری مناسب برای بررسی سوالات یا فرضیات تحقیق می باشد. 

در آزمون های آماری هدف تعیین این موضوع است که آیا داده های نمونه شواهد کافی برای رد یک حدس یا فرضیه را دارند یا خیر؟

انتخاب نادرست آزمون آماری موجب خدشه دار شدن نتایج تحقیق می شود. 

دکتر غلامرضا جندقی استاد یار دانشگاه تهران در مقاله ای کاربرد انواع آزمون های آماری را با توجه به نوع داده ها و وبژگی های نمونه آماری و نوع تحلیل نشان داده است که در این بخش به نکات کلیدی آن اشاره می شود:

قبل از انتخاب یک آزمون آماری بایستی به سوالات زیر پاسخ داد:

1- چه تعداد متغیر مورد بررسی قرار می گیرد؟

2- چند گروه مفایسه می شوند؟

3- آیا توزیع ویژگی مورد بررسی در جامعه نرمال است؟

4- آیا گروه های مورد بررسی مستقل هستند؟

5- سوال یا فرضیه تحقیق چیست؟

6- آیا داده ها پیوسته، رتبه ای و یا مقوله ای Categorical هستند؟

قبل از ادامه این مبحث لازم است مفهوم چند واژه آماری را یاد آور شوم که زیاد وقت گیر نیست. 

1- جامعه آماری: به مجموعه کاملی از افراد یا اشیاء یا اجزاء که حداقل در یک صفت مورد علاقه مشترک باشند ،گفته می شود.

2- نمونه آماری: نمونه بخشی از یک جامعه آماری تحت بررسی است که با روشی که از پیش تعیین شده است انتخاب می‌شود، به قسمی که می‌توان از این بخش، استنباطهایی درباره کل جامعه بدست آورد.

3- پارامتر و آماره: پارامتر یک ویژگی جامعه است در حالی که آماره یک ویژگی نمونه است. برای مثال میانگین جامعه یک پارامتر است. حال اگر از جامعه نمونه‌گیری کنیم و میانگین نمونه را بدست آوریم، این میانگین یک آماره است.

4- برآورد و آزمون فرض: برآوردیابی و آزمون فرض دو روشی هستند که برای استنباط درمورد پارامترهای مجهول دو جمعیت به کار می روند.

5- متغیر: ویژگی یا خاصیت یک فرد، شئ و یا موقعیت است که شامل یک سری از مقادیر با دسته بندیهای متناسب است. قد، وزن، گروه خونی و جنس نمونه هایی از متغیر هستند. انواع متغیر می تواند کمی و کیفی باشد.

6- داده های کمی مانند قد، وزن یا سن درجه بندی می شوند و به همین دلیل قابل اندازه گیری می باشند. داده های کمی نیز خود به دو دسته دیگر تقسیم می شوند:

الف: داده های فاصله ای (Interval data)

ب: داده های نسبتی (Ratio data)

7- داده های فاصله ای: به عنوان مثال داده هایی که متغیر IQ (ضریب هوشی) را در پنج نفر توصیف می کنند عبارتند از: 80، 110، 75، 97 و 117، چون این داده ها عدد هستند پس داده های ما کمی اند اما می دانیم که  IQ نمی تواند صفر باشد و صفر در اینجا فقط مبنایی است تا سایر مقادیر  IQ در فاصله ای منظم از صفر و یکدیگر قرار گیرند پس این داده ها فاصله ای اند.

8- داده های نسبتی: داده های نسبتی داده هایی هستند که با عدد نوشته می شوند اما صفر آنها واقعی است. اکثریت داده های کمی این گونه اند و حقیقتاً دارای صفر هستند. به عنوان مثال داده هایی که متغیر طول پاره خط بر حسب سانتی متر را توصیف می کنند عبارتند از: 20، 15، 35، 8 و 23، چون این داده ها عدد هستند پس داده های ما کمی اند و چون صفر در اینجا واقعاً وجود دارد این داده نسبتی تلقی می شوند.

9- داده های کیفی مانند جنس، گروه خونی یا ملیت فقط دارای نوع هستند و قابل بیان با استفاده از واحد خاصی نیستند. داده های کیفی خود به دو دسته دیگر تقسیم می شوند:

الف: داده های اسمی  (Nominal data)

ب: داده های رتبه ای  (Ordinal data)

10- داده های رتبه ای Ordinal: مانند کیفیت درسی یک دانش آموز (ضعیف، متوسط و قوی) و یا رتبه بندی هتل ها (یک ستاره، دو ستاره و.)

11- داده های اسمی (nominal) که مربوط به متغیر یا خواص کیفی مانند جنس یا گروه خونی است و بیانگر عضویت در یک گروها category  خاص می باشد. (داده مقوله ای)

12- متغیر تصادفی گسسته و پیوسته: به عنوان مثال تعداد تصادفات جاده‌ای در روز یک متغیر تصادفی گسسته است ولی انتخاب یک نقطه‌ به تصادف روی دایره‌ای به مرکز مبدأ مختصات و شعاع 3 یک متغیر تصادفی پیوسته است.

13- گروه: یک متغیر می تواند به لحاظ بررسی یک ویژگی خاص در یک گروه و یا دو و یا بیشتر مورد بررسی قرار گیرد. نکته 1: دو گروه می تواند وابسته و یا مستقل باشد. دو گروه وابسته است اگر ویژگی یک مجموعه افراد قبل و بعد از وقوع یک عامل سنجیده شود. مثلا میزان رضایت شغلی کارکنان قبل و بعد از پرداخت پاداش و همچنین اگر در مطالعات تجربی افراد از نظر برخی ویژگی ها در یک گروه با گروه دیگر همسان شود.

14- جامعه نرمال: جامعه ای است که از توزیع نرمال تبعیت می کند.

15- توزیع نرمال: یکی از مهمترین توزیع ها در نظریه احتمال است. و کاربردهای بسیاری در علوم دارد.

فرمول این توزیع بر حسب دو پارامتر امید ریاضی و واریانس بیان می شود. منحنی رفتار این تابع تا حد زیادی شبیه به زنگ های کلیسا می باشد. این منحنی دارای خواص بسیار جالبی است برای مثال نسبت به محور عمودی متقارن می باشد، نیمی از مساحت زیر منحنی بالای مقدار متوسط و نیمه دیگر در پایین مقدار متوسط قرار دارد و اینکه هرچه از طرفین به مرکز مختصات نزدیک می شویم احتمال وقوع بیشتر می شود.

سطح زیر منحنی نرمال برای مقادیر متفاوت مقدار میانگین و واریانس فراگیری این رفتار آنقدر زیاد است که دانشمندان اغلب برای مدل کردن متغیرهای تصادفی که با رفتار آنها آشنایی ندارند، از این تابع استفاده می کنند. به عنوان  مثال در یک امتحان درسی نمرات دانش آموزان اغلب اطراف میانگین بیشتر می باشد و هر چه به سمت نمرات بالا یا پایین پیش برویم تعداد افرادی که این نمرات را گرفته اند کمتر می شود. این رفتار را بسهولت می توان با یک توزیع نرمال مدل کرد.

اگر یک توزیع نرمال باشد مطابق قضیه چی بی شف 26.68 % مشاهدات در فاصله میانگین، مثبت و منفی یک انحراف معیار قرار دارد. و  44.95 % مشاهدات در فاصله میانگین، مثبت و منفی دو انحراف معیار قرار دارد. و 73.99 % مشاهدات در فاصله میانگین، مثبت و منفی سه انحراف معیار قرار دارد.

نکته 1: واضح است که داده های رتبه ای دارای توزیع نرمال نمی باشند.

نکته 2: وقتی داده ها کمی هستند و تعداد نمونه نیز کم است تشخیص نرمال بودن داده ها توسط آزمون کولموگروف – اسمیرنف مشکل خواهد شد.

 16- آزمون پارامتریک: آزمون های پارامتریک، آزمون های هستند که توان آماری بالا و قدرت پرداختن به داده  های جمع آوری شده در طرح  های پیچیده را دارند. در این آزمون ها داده ها توزیع نرمال دارند. (مانند آزمون تی).

17- آزمون های غیرپارامتری: آزمون هائی می باشند که داده ها توزیع غیر نرمال داشته و در مقایسه با آزمون های پارامتری از توان تشخیصی کمتری برخوردارند.  (مانند آزمون من – ویتنی و آزمون کروسکال و والیس)

نکته3: اگر جامعه نرمال باشد از آزمون های پارامتریک و چنانچه غیر نرمال باشد از آزمون های غیر پارامتری استفاده می نمائیم.

نکته 4: اگر نمونه بزرگ باشد، طبق قضیه حد مرکزی جتی اگر جامعه نرمال نباشد می توان از آزمون های پارامتریک استفاده نمود.

حال به کمک جدول زیر براحتی می توانید یکی از 24 آزمون مورد نظر خود را انتخاب کنید:

هدفداده کمی و دارای توزیع نرمالداده رتبه ای و یا داده کمی غیر نرمالداده های کیفی اسمی
Categorical
توصیف یک گروهآزمون میانگین و انحراف معیارآزمون میانهآزمون نسبت
مقایسه یک گروه با یک مقدار فرضیآزمون یک نمونه ایآزمون ویلکاکسونآزمون خی – دو یا آزمون دو جمله ای
مقابسه دو گروه مستقلآزمون برای نمونه های مستقلآزمون من - ویتنیآزمون دقیق فیشر (آزمون خی دو برای نمونه های بزرگ)
مقایسه دو گروه وابستهآزمون زوجیآزمون کروسکالآزمون مک - نار
مقایسه سه گروه یا بیشتر (مستقل)آزمون آنالیز واریانس یک راههآزمون والیسآزمون خی - دو
مقایسه سه گروه یا بیشتر (وابسته)آزمون آنالیز واریانس با اندازه های مکررآزمون فریدمنآزمون کوکران
اندازه همبستگی بین دو متغیرآزمون ضریب همبستگی پیرسونآزمون ضریب همبستگی اسپرمنآزمون ضریب توافق
پیش بینی یک متغیر بر اساس یک یا چند متغیرآزمون رگرسیون ساده یا غیر خطیآزمون رگرسیون نا پارامتریکآزمون رگرسیون لجستیک
 

در رویکردی دیگر بر مبنای تعداد متغیر، تعداد گروه و نرمال بودن جامعه نیز می توان به الگوریتم آزمون آماری مورد نظر دست یافت:

یک متغیر:

انتخاب آزمون آماری برای یک متغیریک متغیر در یک گروهیک متغیر در دو گروهیک متغیر در سه گروه یا بیشتر
متغیر نرمالآزمون میانگین و انحراف معیارآزمون تیآزمون آنالیز واریانس ANOVA
متغیر غیر نرمالآزمون نسبت (دو جمله ای)آزمون خی -دوآزمون ناپارامتریک

دو متغیر

انتخاب آزمون آماری برای دو متغیرهر دو متغیر پیوسته هستندیک متغیر پیوسته و دیگری گسسته استهر دو متغیر مقوله ای هستند
 آزمون همبستگیآزمون آنالیز واریانس ANOVAآزمون خی - دو

سه متغیر و بیشتر:

انتخاب آزمون آماری برای سه متغیر و بیشتریک گروهدو گروه و بیشتر
 

آنالیز کواریانس

تحلیل ممیزی

 

آنالیز واریانس با اندازه های مکرر

آنالیز واریانس چند متغیره
 

تحلیل عاملی

و

رگرسیون چند گانه

 
 

قابل ذکر است قبل از ورود به الگوریتم انتخاب آزمون آماری بهتر است به سوالات زیر پاسخ دهیم:

1- آیا اختلافی بین میانگین (نسبت) یک ویژگی در دو یا چند گروه وجود دارد؟

2- آیا دو متغیر ارتباط دارند؟

3- چگونه می توان یک متغیر را با استفاده از متغیر های دیگر پیش بینی کرد؟

4- چه چیزی می توان با استفاده از نمونه در مورد جامعه گفت؟

پس از انتخاب آزمون آماری مناسب حال می توان با هر یک از آزمون ها به صورت تخصصی برخورد کرد: 

آزمون کی دو (خی دو یا مربع کای) 

این آزمون از نوع ناپارامتری است و برای ارزیابی همقوارگی متغیرهای اسمی به کار می‌رود. این آزمون تنها راه حل موجود برای آزمون همقوارگی در مورد متغیرهای مقیاس اسمی با بیش از دو مقوله است، بنابراین کاربرد خیلی زیادتری نسبت به آزمونهای دیگر دارد. این آزمون نسبت به حجم نمونه حساس است.

آزمون  z  -  آزمون خطای استاندارد میانگین 

این آزمون برای ارزیابی میزان همقوارگی یا یکسان بودن و یکسان نبودن (Goodness of fit) میانگین نمونه ای و میانگین جامعه به کار می رود. این آزمون مواقعی به کار می رود که می خواهیم بدانیم آیا میانگین برآورد شده نمونه ای با میانگین جامعه جور می آید یا نه.  اگر این تفاوت کم باشد، این تفاوت معلول تغییر پذیری نمونه ای شناخته می شود، ولی اگر زیاد باشد نتیجه گرفته می شود که برآورد نمونه ای با پارامتر جامعه یکسان (همقواره) نیست.  این آزمون پارامتری است یعنی استفاده از آن مشروط به آن است که دو پارامتر جامعه که میانگین و انحراف معیار معلوم باشند. همچنین برای آزمون متغیرهای پیوسته (مقیاس فاصله ای) کاربرد دارد. تعداد نمونه بزرگتر  و یا مساوی 30  باشد و نیز توزیع متغیر در جامعه نرمال باشد.

آزمون استیودنت t

این آزمون برای ارزیابی میزان همقوارگی یا یکسان بودن و نبودن میانگین نمونه ای با میانگین جامعه در حالتی به کار می رود که انحراف معیار جامعه مجهول باشد. چون توزیع t  در مورد نمونه های کوچک (کمتر از 30) با استفاده از درجات آزادی تعدیل می‌شود، می‌توان از این آزمون برای نمونه های بسیار کوچک استفاده نمود. همچنین این آزمون مواقعی که خطای استاندارد جامعه نامعلوم و خطای استاندارد نمونه معلوم باشد، کاربرد دارد.  

برای به کاربردن این آزمون، متغیر مورد مطالعه باید در مقیاس فاصله ای باشد، شکل توزیع آن نرمال و تعداد نمونه کمتر از 30 باشد.

آزمون t در حالتهای زیر کاربرد دارد:

- مقایسه یک عدد فرضی با میانگین جامعه نمونه

- مقایسه میانگین دو جامعه

- مقایسه یک نسبت فرضی با یک نسبتی که از نمونه بدست آمده

- مقایسه دو نسبت از دو جامعه

آزمون F

این آزمون تعمیم یافته آزمون t است و برای ارزیابی یکسان بودن یا یکسان نبودن دو جامعه و یا چند جامعه به کار برده می‌شود. در این آزمون واریانس کل جامعه به عوامل اولیه آن تجزیه می‌شود. به همین دلیل به آن آزمون آنالیز واریانس (ANOVA) نیز می‌گویند. 

وقتی بخواهیم بجای دو جامعه، همقوارگی چند جامعه را تواما با هم مقایسه نماییم از این آزمون استفاده می‌شود، چون مقایسه میانگین های چند جامعه با آزمون t  بسیار مشکل است.  مقایسه میانگین ها و همقوارگی چند جامعه بوسیله این آزمون (F   یا ANOVA) راحت تر از آزمون t  امکان پذیر است.   

آزمون کوکران 

آزمون کوکران تعمیم یافته آزمون مک نمار است. این آزمون برای مقایسه بیش از دو گروه که وابسته باشند و مقیاس آنها اسمی یا رتبه ای باشند به کار می‌رود و همچون آزمون مک نمار، جوابها باید دوتایی باشند. 

برای آزمون تغییرات یک نمونه در زمان ها و یا موقعیت های مختلف (مثل آراء رای دهندگان قبل از انتخابات در زمانهای مختلف) به کار می‌رود. مقیاس می‌تواند اسمی یا رتبه ای باشد. به جای چند سوال می‌توان یک سوال را در موقعیت های مختلف ارزیابی نمود. همه افراد باید به همه سوالات پاسخ گفته باشند. چون پاسخ ها دو جوابی است، در بعضی از انواع تحقیقات ممکن است اطلاعات بدست آمده از دست برود و بهتر است از رتبه بندی استفاده کرد که در این صورت «آزمون ویلکاکسون» بهتر جوابگو خواهد بود. 

در صورت کوچک بودن نمونه ها آزمون کوکران مناسب نیست و بهتر است از «آزمون فرید من» استفاده شود.

آزمون فریدمن 

این آزمون برای مقایسه چند گروه از نظر میانگین رتبه های آنهاست و معلوم می‌کند که آیا این گروه ها می‌توانند از یک جامعه باشند یا نه؟

مقیاس در این آزمون باید حداقل رتبه ای باشد. این آزمون متناظر غیر پارامتری آزمون F است و معمولا در مقیاس های رتبه ای به جای F به کار می‌رود و جانشین آن می‌شود (چون در F باید همگنی واریانس ها وجود داشته باشد که در مقیاسهای رتبه ای کمتر رعایت می‌شود). 

آزمون فریدمن برای تجریه واریانس دو طرفه (برای داده های غیر پارامتری) از طریق رتبه بندی به کار می‌رود و نیز برای مقایسه میانگین رتبه بندی گروه های مختلف. تعداد افراد در نمونه ها باید یکسان باشند که این از معایب این آزمون است. نمونه ها باید همگی جور شده باشند.

آزمون کالماگورف- اسمیرانف 

این آزمون از نوع ناپارامتری است و برای ارزیابی همقوارگی متغیرهای رتبه ای در دو نمونه (مستقل و یا غیر مستقل) و یا همقوارگی توزیع یک نمونه با توزیعی که برای جامعه فرض شده است، به کار می‌رود (اسمیرانف یک نمونه ای). این آزمون در مواردی به کار می‌رود که متغیرها رتبه ای باشند و توزیع متغیر رتبه ای را در جامعه بتوان مشخص نمود. این آزمون از طریق مقایسه توزیع فراوانی های نسبی مشاهده شده در نمونه  با توزیع فراوانی های نسبی جامعه  انجام می‌گیرد. این آزمون ناپارامتری است و بدون توزیع است اما باید توزیع متغیر در جامعه برای هر یک از رتبه های مقیاس رتبه ای در جامعه بطور نسبی در نظر گرفته شود که آنرا نسبت مورد انتظار می نامند.

آزمون کالماگورف- اسمیرانف دو نمونه ای Two- Sample Kalmogorov- Smiranov Test 

این آزمون در مواقعی به کار می‌رود که دو نمونه داشته باشیم (با شرایط مربوط به این آزمون که قبلا گفته شد) و بخواهیم همقوارگی بین آن دو نمونه را با هم مقایسه کنیم.

آزمون کروسکال- والیس

این آزمون متناظر غیر پارامتری آزمون F  است و همچون آزمون F، موقعی به کار برده می‌شود که تعداد گروه ها بیش از 2 باشد. مقیاس اندازه گیری در کروسکال والیس حداقل باید ترتیبی باشد.

این آزمون برای مقایسه میانگین های بیش از 2 نمونه رتبه ای (و یا فاصله ای) بکار می‌رود. فرضیات در این آزمون بدون جهت است یعنی فقط تفاوت را نشان می‌دهد و جهت بزرگتر یا کوچکتر بودن گروه ها را از نظر میانگین هایشان نشان نمی دهد. کارایی این آزمون 95 درصد آزمون F است.

آزمون مک نمار

این آزمون از آزمونهای ناپارامتری است که برای ارزیابی همانندی دو نمونه وابسته بر حسب  متغیر دو جوابی استفاده می‌شود. متغیرها می‌توانند دارای مقیاس های اسمی و یا رتبه ای باشند. این آزمون در طرح های ماقبل و مابعد می‌تواند مورد استفاده قرار گیرد (یک نمونه در دو موقعیت مختلف). این آزمون مخصوصا برای سنجش میزان تاثیر عملکرد تدابیر به کار می‌رود.

ویژگی ها: اگر متغیرها اسمی باشند، این آزمون بی بدیل است اما اگر رتبه ای باشد می‌توان از آزمون t نیز استفاده کرد (در صورت وجود شرایط آزمون t)، و یا آزمون ویلکاکسون استفاده نمود. از عیوب این آزمون این است که جهت و اندازه تغییرات را محاسبه نمی‌کند و فقط وجود تغییرات را در نمونه ها در نظر می‌گیرد.  

آزمون میانه

این آزمون همتای ناپارامتری آزمون های t – Z – F  است و وقتی دو یا چند گروه از میان دو یا چند جامعه مستقل با توزیع های یکسان انتخاب شده اند به کار برده می‌شود. در این آزمون مقیاس اندازه گیری ترتیبی است و بین داده ها نباید همرتبه وجود داشته باشد. این آزمون، هم برای گروه های مستقل و هم وابسته کاربرد دارد و لزومی ندارد که حتما حجم گروه های نمونه با یکدیگر برابر باشند.

آزمون تک نمونه ای دورها 

این آزمون مواقعی به کار می‌رود که توالی مقادیر متغیرها را بخواهیم آزمون نماییم که آیا تصادفی بوده و یا نه. در واقع آزمون کی دو و یا آزمون های دیگر که در آنها توالی متغیرها بی اهمیت است، در این آزمون مهم و اصل انگاشته می‌شود. به عبارت دیگر، برای اینکه بتوانیم در یک نمونه که در آن رویدادهای مختلف از طرف فرد و یا واحد آماری رخ داده است، آزمون نماییم که آیا این رویدادها تصادفی است یا نه، به کار برده می‌شود. هیچ آزمون دیگری همچون این آزمون نمی تواند توالی را مورد نظر قرار دهد. بنابراین برای این منظور منحصر به فرد می‌باشد.

آزمون علامت

این آزمون از انواع آزمونهای غیر پارامتری است و هنگامی به کار برده می‌شود که نمونه های جفت، مورد نظر باشد (مثل زن و شوهر و یا خانه های فرد و زوج و.). زیرا در این آزمون یافته‌ها به صورت جفت جفت بررسی می‌شوند و اندازه مقادیر در آن بی اثر است و فقط علامت مثبت و منفی و یا در واقع جهت پاسخ ها و یا بیشتر و کمتر بودن پاسخ های جفت‌های گروه مورد تحقیق (نمونه آماری) در نظر گرفته می‌شود. 

هنگامی که ارزشیابی متغیر مورد مطالعه با روشهای عادی قابل اندازه گیری نباشد و قضاوت در مورد نمونه های آماری (که به صورت جفت ها هستند) فقط با علامت بیشتر (+) و کمتر (-) مورد نظر باشد، از این آزمون می‌توان استفاده کرد. شکل توزیع می‌تواند نرمال و یا غیر نرمال باشد و یا از یک جامعه و یا دو جامعه باشند (مستقل و یا وابسته). توزیع باید پیوسته باشد. این آزمون فقط تفاوت های زوجها را مورد بررسی قرار می‌دهد و در صورت مساوی بودن نظرات هر زوج (مشابه بودن) آنها را از آزمون حذف می‌کند. چون مقادیر در این آزمون نقشی ندارند، شدت و ضعف و اندازه بیشتر یا کمتر بودن نظرات پاسخگویان (جفت ها) در این آزمون بی اثر است و در واقع نقص این آزمون حساب می‌شود.

آزمون تی هتلینگ (T)

آزمون T هتلینگ تعمیم یافته t استیودنت است. در آزمون t یک نمونه ای، میانگین یک صفت از یک نمونه، با یک عدد فرضی که میانگین آن صفت از جامعه فرض می‌شد، مورد مقایسه قرار می‌گرفت، اما در T  هتلینگ K متغیر (صفت) از آن جامعه (نمونه های جامعه) با k  عدد فرضی، مورد مقایسه قرار می‌گیرند. در واقع این آزمون از نوع آزمونهای چند متغیره است که همقوارگی (Goodness of fit) را بین صفت های مختلف از جامعه بدست می‌دهد. در T  هتلینگ دو نمونه ای نیز همچون T استیودنت دو نمونه ای، مقایسه دو نمونه است اما در این آزمون K صفت از یک جامعه (نمونه) با K صفت از جامعه دیگر (نمونه دیگر) مورد مقایسه قرار می‌گیرد.  

آزمون مان وایتنی U  

هر گاه دو نمونه مستقل از جامعه ای مفروض باشد و متغیرهای آنها به صورت ترتیبی باشند، از این آزمون استفاده می‌شود. این آزمون مشابه t استیودنت با دو نمونه مستقل است و آزمون ناپارامتری آن محسوب می‌شود. 

هرگاه شرایط استفاده از آزمونهای پارامتری در متغیرها موجود نباشد، یعنی متغیرها پیوسته و نرمال نباشند از این آزمون استفاده می‌شود. دو نمونه باید مستقل بوده و هر دو کوچکتر از 10 مورد باشند. در صورت بزرگتر بودن از 10 مورد باید از آماره های ‌‌Z  استفاده کرد (در محاسبات کامپیوتری، تبدیل به Z  به طور خودکار انجام می‌شود). در این آزمون شکل توزیع، پیش فرضی ندارد یعنی می‌تواند نرمال و یا غیر نرمال باشد.  

آزمون ویلکاکسون  

این آزمون از آزمونهای ناپارامتری است که برای ارزیابی همانندی دو نمونه وابسته با مقیاس رتبه ای به کار می‌رود. همچون آزمون مک نمار، این آزمون نیز مناسب طرح های ماقبل و مابعد است (یک نمونه در دو موقعیت مختلف)، و یا دو نمونه که از یک جامعه باشند. این آزمون اندازه تفاوت میان رتبه ها را در نظر می‌گیرد بنابراین متغیرها می‌توانند دارای جوابهای متفاوت و یا فاصله ای باشند. این آزمون متناظر با آزمون t دو نمونه ای وابسته است و در صورت وجود نداشتن شرایط آزمون t جانشین خوبی برای آن است. نمونه های به کار برده شده در این آزمون باید نسبت به سایر صفت هایشان جور شده (جفت شده) باشند.   

آزمون لون Levene

آزمون لون همگنی واریانس ها را در نمونه های متفاوت بررسی می نماید. به عبارتی فرض تساوی متغیر وابسته را برای گروه هائی که توسط عامل رسته ای تعیین شده اند، آزمون می کند و نسبت به اکثر آزمونها کمتر به فرض نرمال بودن وابسته بوده و در واقع به انحراف نرمال مقاوم است.

این آزمون در نظر می گیرد که واریانس جمعیت آماری در نمونه های مختلف برابر است. فرض صفر همگن بودن واریانس ها می باشد یعنی واریانس جمعیت ها با هم برابر است و اگر مقدار P-VALUE در اماره لون کمتر از 0.05 باشد تفاوت بدست آمده در واریانس نمونه بعید است که بر اساس روش نمونه گیری تصادفی رخ داده باشد. بنابراین فرض صفر که برابری واریانس ها می باشد رد می شود و به این نتیجه می رسیم که که بین واریانس ها در نمونه تفاوت وجود دارد.

تبلیغات متنی
فروشگاه ساز رایگان فایل - سیستم همکاری در فروش فایل
بدون هیچ گونه سرمایه ای از اینترنت کسب درآمد کنید.
بهترین فرصت برای مدیران وبلاگ و وب سایتها برای کسب درآمد از اینترنت
WwW.PnuBlog.Com
ارسال دیدگاه